NATA ACCREDITED FOR TECHNICAL COMPETENCE

ChemCentre Environmental Chemistry Section Report of Examination

Accreditation No. 8

Purchase Order: None

ChemCentre Reference:

11E0650

PO Box 1250, Bentley Delivery Centre Bentley WA 6983 T +61 8 9422 9800

> F +61 8 9422 9801 www.chemcentre.wa.gov.au

> > ABN 40 991 885 705

Dept of Environment and Conservation

PO Box 51

Wanneroo WA 6065

Attention: Kirsty Quinlan

Report on: 23 samples received on 04/10/2011

LAB ID	Material	Client ID and Description
11E0650 / 001	water	JCS 001 Salt Lake
11E0650 / 002	water	JCS 002 Samphire Flats
11E0650 / 003	water	JCS 003 Flats South of JCS 001
11E0650 / 004	water	JCS 004 Sedge Swamps nr flats S of JCS
11E0650 / 005	water	JCS 005 Flats North of Coorow-Greenhea
11E0650 / 006	water	JCS 006 RCM 025
11E0650 / 007	water	JCS 007 Mounds Springs S of Little Thr
11E0650 / 008	water	JCS 008 SPS 178 Coolimba Salt Lake
11E0650 / 009	water	JCS 009 Airstrip Salt Lake
11E0650 / 010	water	JCS 010 Diamond in the Desert Spring
11E0650 / 011	water	JCS 011 Samphire Flat NE Cervantes (co
11E0650 / 012	water	JCS 012 Salt Lake NE Cervantes (Car bo
11E0650 / 013	water	JCS 013 Thetis Claypan
11E0650 / 014	water	JCS 014 Thetis Claypan Mound Spring
11E0650 / 015	water	JCS 015 Lake Thetis
11E0650 / 016	water	JCS 016 Eatha Spring
11E0650 / 017	water	JCS 017 Eatha Salt Lake
11E0650 / 018	water	JCS 018 Deadhorse Soak
11E0650 / 019	water	JCS 019 Sedge Swamps W of Deadhorse So
11E0650 / 020	water	JCS 020 Roman Hill Fort
11E0650 / 021	water	JCS 021 Hill River Sedge Swamps
11E0650 / 022	water	JCS 022 Lake Thetis Sedge Swamp
11E0650 / 023	water	JCS 023 South Cervantes palaeo creek

LAB ID Client ID			001 JCS 001	002 JCS 002	003 JCS 003	004 JCS 004	
Sampled			12/09/2011	12/09/2011	13/09/2011	13/09/2011	
Analyte	Method	Unit	2.1				
Bicarbonate	iALK1WATI	mg/L	95	262	436	491	
Calcium	iMET1WCICP	mg/L	390	186	144	161	
Carbonate	iALK1WATI	mg/L	27	<1	<1	<1	
Chloride	iCO1WCDA	mg/L	12600	6310	3490	3550	
Colour, TCU	iCOL1WACO	TCU	5	46	220	310	
Electrical Conductivity	iEC1WZSE	mS/m	3990	1930	1200	1140	
Magnesium	iMET1WCICP	mg/L	1480	503	307	281	
Nitrogen, nitrate + nitrite	iNTAN1WFIA	mg/L	<0.01	<0.01	0.01	0.02	
Nitrogen, total soluble	iNP1WDFIA	mg/L	1.1	2.4	3.3	1.9	
Nitrogen, total	iNP1WTFIA	mg/L	1.2	5.6	3.3	3.4	
Phosphorus, total	iPP1WTFIA	mg/L	<0.01	0.34	0.03	0.10	
Phosphorus, total soluble	iPP1WDFIA	mg/L	<0.01	<0.01	0.02	0.05	
Potassium	iMET1WCICP	mg/L	312	147	71.3	65.0	

LAB ID Client ID			001 JCS 001	002 JCS 002	003 JCS 003	004 JCS 004
Sampled			12/09/2011	12/09/2011	13/09/2011	13/09/2011
Analyte	Method	Unit				
Sodium	iMET1WCICP	mg/L	7810	3450	1910	1740
Sulphate	iCO1WCDA	mg/L	4000	1100	580	560
Total dissolved solids(grav)	iSOL1WDGR	mg/L	28000	12000	6800	6600
Ionic Balance	ixIONBAL5	%	5.1	-0.3	-0.3	-5.1
Chlorophyll "A"	iCHLA1WACO	mg/L	<0.001	<0.001	<0.001	<0.001
Chlorophyll "B"	iCHLA1WACO	mg/L	<0.001	<0.001	<0.001	<0.001
Chlorophyll "C"	iCHLA1WACO	mg/L	<0.001	<0.001	<0.001	<0.001
Phaeophytin "A"*	iCHLA1WACO	mg/L	<0.001	<0.001	<0.001	<0.001
LAB ID Client ID			005 JCS 005	006 JCS 006	007 JCS 007	008 JCS 008
Sampled			13/09/2011	13/09/2011	14/09/2011	14/09/2011
Analyte	Method	Unit				
Bicarbonate	iALK1WATI	mg/L	320	104	1000	85
Calcium	iMET1WCICP	mg/L	1630	1250	160	1870
Carbonate	iALK1WATI	mg/L	<1	27	<1	18
Chloride	iCO1WCDA	mg/L	16400	40900	2540	52600
Colour, TCU	iCOL1WACO	TCU	180	5	280	6
Electrical Conductivity	iEC1WZSE	mS/m	4790	9350	889	11800
Magnesium	iMET1WCICP	mg/L	851	1850	172	2770
Nitrogen, nitrate + nitrite	iNTAN1WFIA	mg/L	0.02	0.01	0.03	<0.01
Nitrogen, total soluble	iNP1WDFIA	mg/L	3.2	1.3	1.0	3.2
Nitrogen, total	iNP1WTFIA	mg/L	4.2	1.3	2.2	4.6
Phosphorus, total	iPP1WTFIA	mg/L	<0.01	<0.01	0.61	0.01
Phosphorus, total soluble	iPP1WDFIA	mg/L	<0.01	<0.01	0.33	<0.01
Potassium	iMET1WCICP	mg/L	350	847	156	1570
Sodium	iMET1WCICP	mg/L	9150	21100	1330	27000
Sulphate	iCO1WCDA	mg/L	3300	5400	120	7000
Total dissolved solids(grav)	iSOL1WDGR	mg/L	34000	71000	4800	97000
Ionic Balance	ixIONBAL5	%	2.0	-4.7	-3.9	-3.1
Chlorophyll "A"	iCHLA1WACO	mg/L	<0.001	<0.001	<0.001	<0.001
Chlorophyll "B"	iCHLA1WACO	mg/L	<0.001	<0.001	<0.001	<0.001
Chlorophyll "C"	iCHLA1WACO	mg/L	<0.001	<0.001	<0.001	<0.001
Phaeophytin "A"*	iCHLA1WACO	mg/L	<0.001	<0.001	<0.001	<0.001
LAB ID Client ID			009 JCS 009	010 JCS 010	011 JCS 011	012 JCS 012
Sampled			14/09/2011	15/09/2011	16/09/2011	16/09/2011
Analyte	Method	Unit				
Bicarbonate	iALK1WATI	mg/L	49	70	204	46
Calcium	iMET1WCICP	mg/L	1150	14.7	215	647
Carbonate	iALK1WATI	mg/L	30	<1	27	21
Chloride	iCO1WCDA	mg/L	29600	382	4010	12400
Colour, TCU	iCOL1WACO	TCU	9	120	100	22
Electrical Conductivity	iEC1WZSE	mS/m	7230	128	1350	3820
Magnesium	iMET1WCICP	mg/L	2070	22.3	327	909
Nitrogen, nitrate + nitrite	iNTAN1WFIA	mg/L	0.01	0.01	0.01	0.01

		017 JCS 017	018 JCS 018	019 JCS 019	020 JCS 020
	1124	20/09/2011	21/09/2011	21/09/2011	22/09/2011
		00700			
	-				12700
					190
					3830
	_				930
	-				0.02
					4.0
	-				4.6
	_				<0.01
	_				<0.01
iMET1WCICP	mg/L			22.1	289
iMET1WCICP	mg/L	18900	628	656	6590
iCO1WCDA	mg/L	6200	73	100	2300
iSOL1WDGR	mg/L	66000	2000	2300	27000
ixIONBAL5	%	-6.1	2.6	2.6	-1.3
iCHLA1WACO	mg/L	<0.001	<0.001	<0.001	<0.001
iCHLA1WACO	mg/L	<0.001	<0.001	<0.001	<0.001
iCHLA1WACO	mg/L	<0.001	<0.001	<0.001	<0.001
iCHLA1WACO	mg/L	<0.001	<0.001	<0.001	<0.001
		004	000	000	
		JCS 021	JCS 022	023 JCS 023	
Method	Unit	JCS 021	JCS 022	JCS 023	
Method iALK1WATI	Unit mg/L	JCS 021	JCS 022	JCS 023	
		JCS 021 22/09/2011	JCS 022 22/09/2011	JCS 023 23/09/2011	
iALK1WATI	mg/L	JCS 021 22/09/2011 156	JCS 022 22/09/2011 351	JCS 023 23/09/2011 305	
iALK1WATI iMET1WCICP	mg/L mg/L	JCS 021 22/09/2011 156 57.4	JCS 022 22/09/2011 351 99.4	JCS 023 23/09/2011 305 29.0	
iALK1WATI iMET1WCICP iALK1WATI	mg/L mg/L mg/L	JCS 021 22/09/2011 156 57.4 <1	JCS 022 22/09/2011 351 99.4 <1	JCS 023 23/09/2011 305 29.0 108	
iALK1WATI iMET1WCICP iALK1WATI iCO1WCDA	mg/L mg/L mg/L mg/L	JCS 021 22/09/2011 156 57.4 <1 1760	JCS 022 22/09/2011 351 99.4 <1 1480	JCS 023 23/09/2011 305 29.0 108 3140	
iALK1WATI iMET1WCICP iALK1WATI iCO1WCDA iCOL1WACO	mg/L mg/L mg/L mg/L TCU	JCS 021 22/09/2011 156 57.4 <1 1760 190	JCS 022 22/09/2011 351 99.4 <1 1480 100	JCS 023 23/09/2011 305 29.0 108 3140 27	
iALK1WATI iMET1WCICP iALK1WATI iCO1WCDA iCOL1WACO iEC1WZSE	mg/L mg/L mg/L mg/L TCU mS/m	JCS 021 22/09/2011 156 57.4 <1 1760 190 593	JCS 022 22/09/2011 351 99.4 <1 1480 100 544	JCS 023 23/09/2011 305 29.0 108 3140 27 997	
iALK1WATI iMET1WCICP iALK1WATI iCO1WCDA iCOL1WACO iEC1WZSE iMET1WCICP	mg/L mg/L mg/L mg/L TCU mS/m mg/L	JCS 021 22/09/2011 156 57.4 <1 1760 190 593 116	JCS 022 22/09/2011 351 99.4 <1 1480 100 544 128	JCS 023 23/09/2011 305 29.0 108 3140 27 997 298	
iALK1WATI iMET1WCICP iALK1WATI iCO1WCDA iCOL1WACO iEC1WZSE iMET1WCICP iNTAN1WFIA	mg/L mg/L mg/L mg/L TCU mS/m mg/L	JCS 021 22/09/2011 156 57.4 <1 1760 190 593 116 <0.01	JCS 022 22/09/2011 351 99.4 <1 1480 100 544 128 <0.01	JCS 023 23/09/2011 305 29.0 108 3140 27 997 298 0.01	
iALK1WATI iMET1WCICP iALK1WATI iCO1WCDA iCOL1WACO iEC1WZSE iMET1WCICP iNTAN1WFIA iNP1WDFIA	mg/L mg/L mg/L TCU mS/m mg/L mg/L	JCS 021 22/09/2011 156 57.4 <1 1760 190 593 116 <0.01 0.76	JCS 022 22/09/2011 351 99.4 <1 1480 100 544 128 <0.01 1.0	JCS 023 23/09/2011 305 29.0 108 3140 27 997 298 0.01 1.8	
iALK1WATI iMET1WCICP iALK1WATI iCO1WCDA iCOL1WACO iEC1WZSE iMET1WCICP iNTAN1WFIA iNP1WDFIA iNP1WTFIA	mg/L mg/L mg/L TCU mS/m mg/L mg/L mg/L mg/L	JCS 021 22/09/2011 156 57.4 <1 1760 190 593 116 <0.01 0.76 1.6	JCS 022 22/09/2011 351 99.4 <1 1480 100 544 128 <0.01 1.0 1.0	JCS 023 23/09/2011 305 29.0 108 3140 27 997 298 0.01 1.8 2.8	
iALK1WATI iMET1WCICP iALK1WATI iCO1WCDA iCOL1WACO iEC1WZSE iMET1WCICP iNTAN1WFIA iNP1WDFIA iNP1WTFIA	mg/L mg/L mg/L TCU mS/m mg/L mg/L mg/L mg/L mg/L	JCS 021 22/09/2011 156 57.4 <1 1760 190 593 116 <0.01 0.76 1.6 0.07	JCS 022 22/09/2011 351 99.4 <1 1480 100 544 128 <0.01 1.0 0.01	JCS 023 23/09/2011 305 29.0 108 3140 27 997 298 0.01 1.8 2.8 0.01	
iALK1WATI iMET1WCICP iALK1WATI iCO1WCDA iCOL1WACO iEC1WZSE iMET1WCICP iNTAN1WFIA iNP1WDFIA iNP1WTFIA iPP1WTFIA	mg/L mg/L mg/L TCU mS/m mg/L mg/L mg/L mg/L mg/L mg/L mg/L	JCS 021 22/09/2011 156 57.4 <1 1760 190 593 116 <0.01 0.76 1.6 0.07 <0.01	JCS 022 22/09/2011 351 99.4 <1 1480 100 544 128 <0.01 1.0 0.01 <0.01	JCS 023 23/09/2011 305 29.0 108 3140 27 997 298 0.01 1.8 2.8 0.01 <0.01	
iALK1WATI iMET1WCICP iALK1WATI iCO1WCDA iCOL1WACO iEC1WZSE iMET1WCICP iNTAN1WFIA iNP1WDFIA iNP1WTFIA iPP1WTFIA iPP1WDFIA iMET1WCICP iMET1WCICP	mg/L mg/L mg/L TCU mS/m mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg	JCS 021 22/09/2011 156 57.4 <1 1760 190 593 116 <0.01 0.76 1.6 0.07 <0.01 40.5 965	JCS 022 22/09/2011 351 99.4 <1 1480 100 544 128 <0.01 1.0 0.01 <0.01 35.8 874	JCS 023 23/09/2011 305 29.0 108 3140 27 997 298 0.01 1.8 2.8 0.01 <0.01 71.9 1770	
iALK1WATI iMET1WCICP iALK1WATI iCO1WCDA iCOL1WACO iEC1WZSE iMET1WCICP iNTAN1WFIA iNP1WDFIA iNP1WTFIA iPP1WTFIA iPP1WDFIA iMET1WCICP	mg/L mg/L mg/L TCU mS/m mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg	JCS 021 22/09/2011 156 57.4 <1 1760 190 593 116 <0.01 0.76 1.6 0.07 <0.01 40.5	JCS 022 22/09/2011 351 99.4 <1 1480 100 544 128 <0.01 1.0 0.01 <0.01 35.8	JCS 023 23/09/2011 305 29.0 108 3140 27 997 298 0.01 1.8 2.8 0.01 <0.01 71.9	
iALK1WATI iMET1WCICP iALK1WATI iCO1WCDA iCOL1WACO iEC1WZSE iMET1WCICP iNTAN1WFIA iNP1WDFIA iNP1WTFIA iPP1WTFIA iPP1WDFIA iMET1WCICP iMET1WCICP iCO1WCDA iSOL1WDGR	mg/L mg/L mg/L TCU mS/m mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg	JCS 021 22/09/2011 156 57.4 <1 1760 190 593 116 <0.01 0.76 1.6 0.07 <0.01 40.5 965 210 3300	JCS 022 22/09/2011 351 99.4 <1 1480 100 544 128 <0.01 1.0 0.01 <0.01 <0.01 35.8 874 210 3000	JCS 023 23/09/2011 305 29.0 108 3140 27 997 298 0.01 1.8 2.8 0.01 <0.01 71.9 1770 310 5700	
iALK1WATI iMET1WCICP iALK1WATI iCO1WCDA iCOL1WACO iEC1WZSE iMET1WCICP iNTAN1WFIA iNP1WDFIA iNP1WTFIA iPP1WTFIA iPP1WDFIA iMET1WCICP iCO1WCDA iSOL1WDGR ixIONBAL5	mg/L mg/L mg/L TCU mS/m mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg	JCS 021 22/09/2011 156 57.4 <1 1760 190 593 116 <0.01 0.76 1.6 0.07 <0.01 40.5 965 210 3300 -1.1	JCS 022 22/09/2011 351 99.4 <1 1480 100 544 128 <0.01 1.0 0.01 <0.01 35.8 874 210 3000 2.3	JCS 023 23/09/2011 305 29.0 108 3140 27 997 298 0.01 1.8 2.8 0.01 <0.01 71.9 1770 310 5700 0.4	
iALK1WATI iMET1WCICP iALK1WATI iCO1WCDA iCOL1WACO iEC1WZSE iMET1WCICP iNTAN1WFIA iNP1WDFIA iNP1WTFIA iPP1WTFIA iPP1WDFIA iMET1WCICP iMET1WCICP iCO1WCDA iSOL1WDGR ixIONBAL5 iCHLA1WACO	mg/L mg/L mg/L TCU mS/m mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg	JCS 021 22/09/2011 156 57.4 <1 1760 190 593 116 <0.01 0.76 1.6 0.07 <0.01 40.5 965 210 3300 -1.1 0.001	JCS 022 22/09/2011 351 99.4 <1 1480 100 544 128 <0.01 1.0 0.01 <0.01 35.8 874 210 3000 2.3 <0.001	JCS 023 23/09/2011 305 29.0 108 3140 27 997 298 0.01 1.8 2.8 0.01 <0.01 71.9 1770 310 5700 0.4 <0.001	
iALK1WATI iMET1WCICP iALK1WATI iCO1WCDA iCOL1WACO iEC1WZSE iMET1WCICP iNTAN1WFIA iNP1WDFIA iNP1WTFIA iPP1WTFIA iPP1WDFIA iMET1WCICP iCO1WCDA iSOL1WDGR ixIONBAL5	mg/L mg/L mg/L TCU mS/m mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg	JCS 021 22/09/2011 156 57.4 <1 1760 190 593 116 <0.01 0.76 1.6 0.07 <0.01 40.5 965 210 3300 -1.1	JCS 022 22/09/2011 351 99.4 <1 1480 100 544 128 <0.01 1.0 0.01 <0.01 35.8 874 210 3000 2.3	JCS 023 23/09/2011 305 29.0 108 3140 27 997 298 0.01 1.8 2.8 0.01 <0.01 71.9 1770 310 5700 0.4	
	iCO1WCDA iSOL1WDGR ixIONBAL5 iCHLA1WACO iCHLA1WACO iCHLA1WACO	iCO1WCDA mg/L iCOL1WACO TCU iEC1WZSE mS/m iMET1WCICP mg/L iNTAN1WFIA mg/L iNP1WDFIA mg/L iPP1WTFIA mg/L iPP1WTFIA mg/L iMET1WCICP mg/L iMET1WCICP mg/L iCO1WCDA mg/L iSOL1WDGR mg/L iXIONBAL5 iCHLA1WACO mg/L iCHLA1WACO mg/L	JCS 017 20/09/2011	JCS 017 JCS 018	Method Unit 21/09/2011 21/09/2011 21/09/2011 21/09/2011 21/09/2011 21/09/2011

iALK1WATI iCHLA1WACO 11E0650

Method

Alkalinity (as CaCO3) and constituents by acid titration (APHA 2320B). Chlorophyll A, B and C by colourimetry, APHA 1020.

Method Description

This document is issued in accordance with NATA's accreditation requirements.

LAB ID Client ID			009 JCS 009	010 JCS 010	011 JCS 011	012 JCS 012
Sampled			14/09/2011	15/09/2011	16/09/2011	16/09/2011
Analyte	Method	Unit				
Nitrogen, total soluble	iNP1WDFIA	mg/L	2.7	0.43	1.2	1.5
Nitrogen, total	iNP1WTFIA	mg/L	3.3	0.46	2.6	3.7
Phosphorus, total	iPP1WTFIA	mg/L	<0.01	0.02	0.01	0.02
Phosphorus, total soluble	iPP1WDFIA	mg/L	<0.01	<0.01	<0.01	<0.01
Potassium	iMET1WCICP	mg/L	629	6.6	122	285
Sodium	iMET1WCICP	mg/L	14700	225	2270	6730
Sulphate	iCO1WCDA	mg/L	6100	34	1000	3300
Total dissolved solids(grav)	iSOL1WDGR	mg/L	55000	660	8500	27000
Ionic Balance	ixIONBAL5	%	-4.5	-0.3	0.5	-1.5
Chlorophyll "A"	iCHLA1WACO	mg/L	<0.001	0.004	<0.001	<0.001
Chlorophyll "B"	iCHLA1WACO	mg/L	<0.001	0.001	<0.001	<0.001
Chlorophyll "C"	iCHLA1WACO	mg/L	<0.001	<0.001	<0.001	<0.001
Phaeophytin "A"*	iCHLA1WACO	mg/L	<0.001	<0.001	<0.001	<0.001
· ····································						****
LAB ID			013	014	015	016
Client ID			JCS 013	JCS 014	JCS 015	JCS 016
Sampled			19/09/2011	19/09/2011	19/09/2011	20/09/2011
Analyte	Method	Unit				
Bicarbonate	iALK1WATI	mg/L	110	253	271	311
Calcium	iMET1WCICP	mg/L	113	83.6	489	334
Carbonate	iALK1WATI	mg/L	30	<1	36	<1
Chloride	iCO1WCDA	mg/L	3190	349	28600	8620
Colour, TCU	iCOL1WACO	TCU	82	6	2	3
Electrical Conductivity	iEC1WZSE	mS/m	995	150	7020	2520
Magnesium	iMET1WCICP	mg/L	206	24.1	1700	565
Nitrogen, nitrate + nitrite	iNTAN1WFIA	mg/L	0.03	1.7	0.01	1.8
Nitrogen, total soluble	iNP1WDFIA	mg/L	1.4	2.0	2.9	2.3
Nitrogen, total	iNP1WTFIA	mg/L	1.7	2.0	3.1	2.3
Phosphorus, total	iPP1WTFIA	mg/L	<0.01	<0.01	<0.01	<0.01
Phosphorus, total soluble	iPP1WDFIA	mg/L	<0.01	<0.01	<0.01	<0.01
Potassium	iMET1WCICP	mg/L	65.6	7.5	704	164
Sodium	iMET1WCICP	mg/L	1680	186	14300	4800
Sulphate	iCO1WCDA	mg/L	450	39	3300	1100
Total dissolved solids(grav)	iSOL1WDGR	mg/L	5400	760	50000	16000
Ionic Balance	ixIONBAL5	%	-2.4	-1.7	-4.6	1.0
Chlorophyll "A"	iCHLA1WACO	mg/L	<0.001	<0.001	<0.001	<0.001
Chlorophyll "B"	iCHLA1WACO	mg/L	<0.001	<0.001	<0.001	<0.001
Chlorophyll "C"	iCHLA1WACO	mg/L	<0.001	<0.001	<0.001	<0.001
Phaeophytin "A"*	iCHLA1WACO	mg/L	<0.001	<0.001	<0.001	<0.001
LAB ID Client ID			017 JCS 017	018 JCS 018	019 JCS 019	020 JCS 020
Sampled			20/09/2011	21/09/2011	21/09/2011	22/09/2011
Analyte	Method	Unit				
Bicarbonate	iALK1WATI	mg/L	140	308	354	515
Calcium	iMET1WCICP	mg/L	1370	123	156	675
Carbonate	iALK1WATI	mg/L	6	<1	<1	<1
		-		Δ's accreditation re		Page 3 of 5

ChemCentre Environmental Chemistry Section

Report of Examination

Accreditation No. 8

Purchase Order: None

ChemCentre Reference: 11E1709

PO Box 1250, Bentley Delivery Centre Bentley WA 6983 T +61 8 9422 9800 F +61 8 9422 9801

www.chemcentre.wa.gov.au

ABN 40 991 885 705

Dept of Environment and Conservation

PO Box 51

Wanneroo WA 6065

Attention: Kirsty Quinlan

Report on: 2 samples received on 02/03/2012

LAB ID

Material

Client ID and Description

11E1709 / 001 11E1709 / 002 water water JCS 024 Spring within Thetis Claypan

JCS 025 Spring within JCS 011

LAB ID Client ID 001

002

LAB ID

JCS 024

JCS 025

Sampled

27/02/2012 27/02/2012

Analyte	Method	Unit		
Bicarbonate	iALK1WATI	mg/L	296	262
Calcium	iMET1WCICP	mg/L	112	78.0
Carbonate	iALK1WATI	mg/L	<1	<1
Chloride	iCO1WCDA	mg/L	607	443
Chlorophyll "A"	iCHLA1WACO	mg/L	0.002	<0.001
Chlorophyll "B"	iCHLA1WACO	mg/L	<0.001	< 0.001
Chlorophyll "C"	iCHLA1WACO	mg/L	<0.001	<0.001
Colour, TCU	iCOL1WACO	TCU	6	10
Electrical Conductivity	iEC1WZSE	mS/m	245	186
Magnesium	iMET1WCICP	mg/L	43.4	30.8
Nitrate	iNTA1WFIA	mg/L	11	0.31
Nitrogen, total soluble	iNP1WDFIA	mg/L	2.6	0.54
Nitrogen, total	iNP1WTFIA	mg/L	2.6	0.54
Phaeophytin "A"	iCHLA1WACO	mg/L	<0.001	< 0.001
Phosphorus, total	iPP1WTFIA	mg/L	<0.01	<0.01
Phosphorus, total soluble	iPP1WDFIA	mg/L	<0.01	<0.01
Potassium	iMET1WCICP	mg/L	11.6	12.9
Sodium	iMET1WCICP	mg/L	364	231
Sulphate (from S)	iMET1WCICP	mg/L	79.2	66.1
Total dissolved solids(grav)	iSOL1WDGR	mg/L	1300	980

Method Description

iALK1WATI Alkalinity (as CaCO3) and constituents by acid titration (APHA 2320B). iCHLA1WACO Chlorophyll A, B, C and phaeophytin by colourimetry, APHA 1020.

iCO1WCDA Colourimetric analysis by DA (Discrete Autoanalyser), APHA and in house methods.

iCOL1WACO Colour by spectrometry (APHA 2120-C)

iEC1WZSE Electrical conductivity in water compensated to 25C (APHA 2510B).

iMET1WCICP Total dissolved metals by ICPAES (APHA 3120).

iNP1WDFIA Total Soluble Nitrogen by persulphate digestion FIA (APHA 4500N-C,I).

iNP1WTFIA Total Nitrogen by persulphate digestion FIA (APHA 4500N-C,I).

11E1709

This document is issued in accordance with NATA's accreditation requirements.

Method	Method Description	
iNTA1WFIA	Nitrite plus Nitrate in water by FIA expressed as Nitrate (APHA 4500NO3-I)	
iPP1WDFIA	Total Soluble Phosphorus by persulphate digestion and FIA (APHAP-J,G).	
iPP1WTFIA	Total Phosphorus by persulphate digestion and FIA (APHAP-J,G).	
iSOL1WDGR	Total dissolved solids (TDS) by gravimetry (APHA 2540C).	

These results apply only to the sample(s) as received. Unless arrangements are made to the contrary, these samples will be disposed of after 30 days of the issue of this report.

This report may only be reproduced in full.

Dr Michael North Senior Chemist and Research Officer **Environmental Chemistry Section** 13-Mar-2012